
For a brighter QFuture

QtCon / Akademy, Berlin 2016

Ivan Čukíc

ivan.cukic@kde.org
http://cukic.co

Futures QFuture AsynQt Epilogue

About me

KDE development
Talks and teaching
Functional programming enthusiast, but not a purist

2

Futures QFuture AsynQt Epilogue

Disclaimer

Make your code readable. Pretend the next person
who looks at your code is a psychopath and they know
where you live.

Philip Wadler

3

Futures QFuture AsynQt Epilogue

Disclaimer

The code snippets are optimized for presentation, it is not
production-ready code.
std namespace is omitted, value arguments used instead of const-refs or
forwarding refs, etc.

4

FUTURES

Introduction

Concurrency

Futures

Futures QFuture AsynQt Epilogue

Value

T value = function();

6

Futures QFuture AsynQt Epilogue

Blocking

What if the call takes too long to complete?

T value = function();
↖ execution is blocked until function finishes

7

Futures QFuture AsynQt Epilogue

Blocking

I/O
User input
Network communication

T value = function();
↖ execution is blocked until function finishes

8

Futures QFuture AsynQt Epilogue

Blocking

Callbacks?
Signals and slots?
Spin off threads, and wait in the thread?

T value = function();
↖ execution is blocked until function finishes

9

Futures QFuture AsynQt Epilogue

Inversion of Control

10

Futures QFuture AsynQt Epilogue

Out of Control

“Spaghetti code”
by George W. Hart

11

Futures QFuture AsynQt Epilogue

Future

future<T> handler = function();

12

Futures QFuture AsynQt Epilogue

Future

future<T> handler = function();
. . .
T value = handler.get();

13

Futures QFuture AsynQt Epilogue

Future

future<T> handler = function();
. . .
T value = handler.get(); !

14

Futures QFuture AsynQt Epilogue

Future

future<T> handler = function();
. . .
handler →

[] (T value) { . . . }

15

Futures QFuture AsynQt Epilogue

Future

future<T> handler = function();

handler.then([] (T value) { . . . });

auto value = await handler();

16

Futures QFuture AsynQt Epilogue

Concurrency problems

A large fraction of the flaws in software development
are due to programmers not fully understanding all the
possible states their code may execute in. In a
multithreaded environment, the lack of understanding
and the resulting problems are greatly amplified,
almost to the point of panic if you are paying attention.

John Carmack
In-depth: Functional programming in C++

17

Futures QFuture AsynQt Epilogue

Futures

std::future
boost::future
QFuture
Folly Future

18

QFUTURE

History

Problems

Under the wraps

Futures QFuture AsynQt Epilogue

A bit of history

Qt4

Born in QtConcurrent – for collecting the results of
asynchronous operations

Operations like filtering, mapping, reduction etc. or for simply
executing a function on another thread.

The main use-case was the fork-join pattern – do stuff in
multiple threads, and get the result.

20

Futures QFuture AsynQt Epilogue

A bit of history

Road to Qt5

Moving QFuture from QtConcurrent to QtCore

When QtConcurrent was been moved out of QtCore, some of
it stayed behind in QtCore: QThreadPool, but not QFuture. I’m
arguing here that QFuture should stay in QtCore, or else be
renamed to QtConcurrent::Future, to not impede development
in that area until Qt 6.

[...]

– Mark Mutz

21

Futures QFuture AsynQt Epilogue

Today

Qt5

QFuture is a part of QtCore and is no more tied to
QtConcurrent.

But is it really?

Still meant only for multi-threading
It can not really be constructed outside of QtConcurrent
API tailored exactly for QtConcurrent uses
...

22

Futures QFuture AsynQt Epilogue

Threading

Qt5

Used to model thread-based concurrent invocations. What
about all other asynchronous computations?

QMetaObject::invokeMethod and QueuedInvocation
"If the invocation is asynchronous, the return value cannot
be evaluated";
QDBusPendingReply<T> is a thing.
It is a value that will be avilable in the future;
QNetworkReply is a complex structure which will
initialize its data some time in the future;
KJob is again a process that can yield a result when the
asynchronous job is completed;
...

23

Futures QFuture AsynQt Epilogue

Threading

Qt5

Many future-like things, none of them are QFuture.

No ability to compose several calls. Require a lot of boiler-plate
to deal with all of them.

void processResult(QFuture<Smth> future)
how awesome would it be not to care ↗

about which future-like object it is

24

Futures QFuture AsynQt Epilogue

Construction

Qt5

So, how do I create a QFuture?

It has only the default constructor which creates an empty, can-
celed future, and a copy constructor.

QFuture();
QFuture(const QFuture &other);

25

Futures QFuture AsynQt Epilogue

Construction

Qt5

So, how do I create a QFuture?

From the docs: "To start a computation, use one of the APIs in
the Qt Concurrent framework."

QtConcurrent::run(. . .);
QtConcurrent::filter(. . .);
QtConcurrent::mappedReduced(. . .);

26

Futures QFuture AsynQt Epilogue

Getting the value

Qt5

So, how do I get the value from a QFuture?

We can use .get(), but then there is no point in using the futures
in the first place.

future.get();
↖

but get blocks

27

Futures QFuture AsynQt Epilogue

Getting the value

Qt5

So, how do I get the value from a QFuture?

Instead of trying to get the value, consider the future is a black
box, and we can only tell it to whom to send the result.

future →
continuation

28

Futures QFuture AsynQt Epilogue

Getting the value

Qt5

So, how do I get the value from a QFuture?

Instead of trying to get the value, consider the future is a black
box, and we can only tell it to whom to send the result.

auto watcher = new QFutureWatcher<int>();
QObject::connect(watcher,

&QFutureWatcherBase::finished, [=] {
continuation(watcher->result());
watcher->deleteLater();

});
watcher->setFuture(qfuture);

29

Futures QFuture AsynQt Epilogue

Other fun things

Qt5

Not only one value – QFuture<T> is essentially a future of
a list of Ts
It can store an exception (an error in the asynchronous
computation), but the exception can not be accessed via
the API without calling .get() which rethrows the
exception.
Job control – setPaused(bool), cancel()
...

30

Futures QFuture AsynQt Epilogue

Under the wraps

QFuture is very limited as far as the public API is concerned, and
we (will pretend) we can not access the private API of a class
template.

But, the interesting things are not in the QFuture, but in the
QFutureInterface<T>.

template <typename T>
class QFutureInterface: . . . {
public:

QFuture<T> future();
};

31

Futures QFuture AsynQt Epilogue

Construction

So, how do I create a QFuture?

Creating a future that already holds a value is trivial, just create
the interface instance, and set the value.

QFutureInterface<T> interface;
auto future = interface.future();

interface.reportStarted();
interface.reportResult(value);
interface.reportFinished();
return future;

32

Futures QFuture AsynQt Epilogue

Construction

So, how do I create a QFuture?

To create a future that contains an error – just create the inter-
face instance, and set the error.

QFutureInterface<T> interface;
auto future = interface.future();

interface.reportStarted();
interface.reportException(exception);
interface.reportFinished();
return future;

33

Futures QFuture AsynQt Epilogue

Construction

So, how do I create a QFuture?

To create a future that will contain a value after a few seconds
you’ll have to do a bit more. Create your own future interface
class.

template <typename T>
class DelayedFutureInterface : public QObject

, public QFutureInterface<T>
{

. . .
};

34

Futures QFuture AsynQt Epilogue

Construction

And make its start member function complete the future after a
given number of milliseconds.

QFuture<T> start()
{

auto future = this->future();
this->reportStarted();

QTimer::singleShot(milliseconds, [this] {
this->reportResult(value);
this->reportFinished();
deleteLater();

});

return future;
}

35

ASYNQT

Usage

Futures QFuture AsynQt Epilogue

Construction

AsynQt

So, how do I create a QFuture?

makeReadyFuture(6);

makeCanceledFuture<void>();

makeDelayedFuture(42, 1h + 30min); // C++14

37

Futures QFuture AsynQt Epilogue

Construction

AsynQt

So, how do I create a QFuture?

Wrappers can be written once, and then everything becomes a
QFuture.

DBus::asyncCall(. . .);

Process::getOutput("ls");
↖ collects process output

Process::exec("ls", [] (auto p) { return p->exitCode(); });
↖ the future will contain the process exit code

38

Futures QFuture AsynQt Epilogue

Getting the value

AsynQt

So, how do I get the value from a QFuture?

You simply don’t.

But you can pass the value on, once it is available.

QFuture<QString> input = getUserInput();

↙ we can not create a .then for the QFuture
input | [] (QString) { do something with the value };
↖ also returns a future

39

Futures QFuture AsynQt Epilogue

Transforming the value

AsynQt

QFuture<QString> input = getUserInput();

QFuture<int> length = input | transform(&QString::length);
↖ future that will be initialized as

soon as the input becomes available

QFuture<QString> valid = input | filter(&inputValidation);
↖ future that will hold only valid

input strings (remember, QFuture
can hold a list of items)

40

Futures QFuture AsynQt Epilogue

Transforming the value

AsynQt

QFuture<QByteArray> future =
Process::getOutput("echo", { "Hello KDE" });

we got a future of QByteArray

↙ but we wanted QFuture<QString>
QFuture<QString> castFuture =

qfuture_cast<QString>(future);

QFuture<QString> castFuture = future | cast<QString>();
or just simply pipe it ↗

41

Futures QFuture AsynQt Epilogue

Getting the value

AsynQt

What if we want to send the value to another function that will
return us a QFuture, will we get a QFuture<QFuture<T>>?

QFuture<QString> input = getUserInput();

QFuture<int> length = ↙ creates a nested future
flatten(input | transform(. . .));

↖ converts a nested future into a normal one

QFuture<int> length =
input | [] (QString value) {

↖ shorthand for transform-and-flatten
// server returns us a future of the HTTP status
return server.send(value);

};

42

Futures QFuture AsynQt Epilogue

More composing

AsynQt

And the usual...

collect: collection<QFuture<T>> -> QFuture<collection<T>>

collect:
(QFuture<T1>, QFuture<T2>, ...)

-> QFuture<tuple<T1, T2, ...>>

anyOf: collection<QFuture<T>> -> QFuture<T>

anyOf:
(QFuture<T1>, QFuture<T2>, ...)

-> QFuture<variant<T1, T2, ...>>

...

43

Futures QFuture AsynQt Epilogue

Limitations of QFuture

Either single values, or multiple values stored in memory –
not suitable for data streams;
Custom QFutures are not first-class citizens;
Big overhead (both API and runtime) for a concept that
could have been much simpler if only it weren’t born as a
part of Qt Concurrent;
AsynQt – useful or a fun, but futile experiment?

44

Futures QFuture AsynQt Epilogue

Answers? Questions! Questions? Answers!

Kudos:

Friends at KDE
Saša Malkov
Zoltán Porkolab

Worth reading and watching:

Systematic Error
Handling in C++,
Andrei Alexandrescu
Await 2.o,
Gor Nishanov
Ranges proposal,
Eric Niebler

45

	Futures
	Introduction
	Concurrency
	Futures

	QFuture
	History
	Problems
	Under the wraps

	AsynQt
	Usage

