
Functional Reactive Programming in C++

Meeting C++ 2016

Ivan Čukíc
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Disclaimer

Make your code readable. Pretend the next person
who looks at your code is a psychopath and they know
where you live.

Philip Wadler
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Disclaimer

The code snippets are optimized for presentation, it is not
production-ready code.
std namespace is omitted, value arguments used instead of const-refs or
forwarding refs, etc.
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FUNCTIONAL DESIGN

Higher-order functions

Purity and referential transparency
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Elements of functional design

Higher-order functions
Purity
Immutable state
. . .
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Higher-order functions

We have had higher-order functions since C++98.

No lambdas, no std::function ... needed.

f i n d _ i f ( beg in ( cs ) , end ( cs ) , is_error ) ;

auto gt42 = bind (greater<>() , _1 , 42);
/ / or old bind1st , . . .
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Higher-order functions

We have had higher-order functions for as long as we have had
the call operator.

c lass func t i ona l_ob j e c t {
pub l i c :

r esu l t operator() ( ... ) const
{

...
}

} ;
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Word frequency

1986: Donald Knuth was asked to implement a program for
the "Programming pearls" column in the Communications of
ACM journal.

The task: Read a file of text, determine the n most frequently
used words, and print out a sorted list of those words along
with their frequencies.

His solution written in Pascal was 10 pages long.
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Word frequency

Response by Doug McIlroy was a 6-line shell script that did
the same:

t r −cs A−Za−z ’ \ n ’ |
t r A−Z a−z |
sort |
un iq −c |
sort −rn |
sed ${1}q
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Functional thinking – data transformation
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Word frequency in C++

I t was a b r i gh t cold day i n Apr i l , \n
and the clocks were s t r i k i n g t h i r t e en . \n
Winston Smith , h i s ch i n nuzzled

data | transform (
[ ] ( char c ) {

return isalnum ( c ) ? c : ’ \ n ’ ;
} )

I t \nwas\na\nb r i gh t \ncold\nday\n i n \nAp r i l \n\n
and\nthe\nclocks\nwere\n s t r i k i n g \n t h i r t e en \n\n
Winston\nSmith\n\nh i s \nch i n \nnuzzled
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Word frequency in C++

I t \nwas\na\nb r i gh t \ncold\nday\n i n \nAp r i l \n\n
and\nthe\nclocks\nwere\n s t r i k i n g \n t h i r t e en \n\n
Winston\nSmith\n\nh i s \nch i n \nnuzzled

. . . | transform ( tolower )

i t \nwas\na\nb r i gh t \ncold\nday\n i n \n a p r i l \n\n
and\nthe\nclocks\nwere\n s t r i k i n g \n t h i r t e en \n\n
winston\nsmith\n\nh i s \nch i n \nnuzzled
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Word frequency in C++

i t \nwas\na\nb r i gh t \ncold\nday\n i n \n a p r i l \n\n
and\nthe\nclocks\nwere\n s t r i k i n g \n t h i r t e en \n\n
winston\nsmith\n\nh i s \nch i n \nnuzzled

. . . | s p l i t ( ’ \ n ’ )

it was a bright cold day in april
and the clocks were striking thirteen
winston smith his chin nuzzled
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Word frequency in C++

it was a bright cold day in april
and the clocks were striking thirteen
winston smith his chin nuzzled

. . . | sort
| group_by ( equal_to < >( ) )

{ a a a a a . . . } ,
{ as as as as as . . . } ,
{ at at at at at . . . }
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Word frequency in C++

{ a a a a a . . . } ,
{ and and and and and . . . }
{ as as as as as . . . } ,

. . . | transform ( [ ] ( const auto &grp ) {
return make_pair (

count ( grp ) , *grp . cbeg in ( ) ) ;
} )

( 181, a ) ,
( 163, and ) ,
( 39, as ) ,
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Word frequency in C++

( 181, a ) ,
( 163, and ) ,
( 39, as ) ,

. . . | sort
| reverse
| take (2)

( 439, the ) ,
( 256, of ) ,
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Word frequency in C++

data | transform ( [ ] ( char c ) {
return isalnum ( c ) ? c : ’ \ n ’ ;

} )
| transform ( tolower )
| s p l i t ( ’ \ n ’ )
| sort
| group_by ( equal_to < >( ) )
| transform ( [ ] ( const auto &grp ) {

return make_pair (
count ( grp ) , *grp . cbeg in ( ) ) ;

} )
| sort
| reverse
| take ( n )

* Inspired by the solution written by N. Milev in Haskell
18
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Purity and referential transparency

i n t answer ( )
{

std::cout « "Calculating the result\n" ;
re turn 42;

}

...
auto resu l t = answer() ;
...

$ ./a.out
Calculating the result
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Purity and referential transparency

i n t answer ( )
{

std::cout « "Calculating the result\n" ;
re turn 42;

}

...
auto resu l t = 42 ;
...

$ ./a.out
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Handling the program state

vo id on_cl i cked ( const c l i c k_even t &event )
{

employees_view−> v i s i b l e = true ;
employees_view−>load_team ( ) ;

}
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Object-oriented design

Don’t ask for the information you need to do the work;
ask the object that has the information to do the work
for you.

Allen Holub
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Object-oriented design

Step one in the transformation of a successful
procedural developer into a successful object
developer is a lobotomy.

David West, Object Thinking
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Object-oriented design

[...] Besides that, object thinking will lead to object
immutability [...]

Yegor Bugayenko
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Object-oriented design
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State in pure functional programs
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State in pure functional programs
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Isn’t creating new worlds expensive?

Option 1: We don’t really want copies:

c lass world {
world with_populat ion

( i n t new_population ) &&
{

world resu l t ( std : : move(* t h i s ) ) ;
...
re turn resu l t ;

}
} ;

Option 2: Use immutable data structures (see Okasaki)
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Isn’t creating new worlds expensive?

c lass world {
world with_populat ion ( i n t ) && ;

} ;

auto brave_new_world =
world.with_population(6) ; // error!

auto new_world =
move(world).with_population(420) ;
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Isn’t creating new worlds expensive?

c lass world {
world with_populat ion ( i n t ) && ;

} ;

The compiler enforces us not to write inneficient code.

If we provide anything else, we explicitly tell through our API
that we support having parallel worlds.
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Benefits of having parallel worlds

Time travel (and reverse debugging, like gdb does)
Testing different possible scenarios at the same time
Maybe even having them interact with each other

31
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What is reactive?

We believe that a coherent approach to systems
architecture is needed, and we believe that all
necessary aspects are already recognised individually:
we want systems that are Responsive, Resilient, Elastic
and Message Driven. We call these Reactive Systems.
Systems built as Reactive Systems are more flexible,
loosely-coupled and scalable. This makes them easier
to develop and amenable to change. They are
significantly more tolerant of failure and when failure
does occur they meet it with elegance rather than
disaster. Reactive Systems are highly responsive, giving
users effective interactive feedback.

Reactive Manifesto 2.0
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Reactive systems

One view of being reactive:

responds quickly
resilient to failure
responsive under workload
based on message-passing
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What is reactive?

Showing a response to a stimulus

Oxford Dictionary
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Ways to be reactive?

C: event call-backs
Java: event listeners
C++/Qt: signals and slots
Threads for all!

even IO streams?
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Lets try this again...

Design components:

to react to requests, not to respond
to request, not to need the response
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Lets try this again...
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Modify and pass on

No shared mutable state
Separate isolated components
Communication only through message passing
No upstream response messages
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Modify and pass on
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Modify and pass on
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What is a source?

Web server client connection requests
User interface events
Database results
I/O
Any data collection
...
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Streams are ranges

Streams can only be transformed with algorithms that accept
input ranges, since we don’t have all the items. We don’t even
know when (if) they will end.

transform, filter, take, drop, etc.
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Small demo
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Small demo

We have a stream of mouse cordinates: mouse_stream
And a set of receivers like mouse_cursor,
top_ruler_marker, etc.

Basic direct connection:

mouse_stream | mouse_cursor−>move_to ;
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Transforming the input

We want to transform the mouse coordinate, to project it on
the x axis:

mouse_stream |
transform ( project_on_x ) |

top_ruler_marker−>move_to ;

But the mouse cursor marker is no longer moving.
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Forking the stream

mouse_stream |
/ / Pass the events to the mouse cursor ,
/ / and pass them to the next
/ / t ransformat ion i n the cha i n
tee ( mouse_cursor−>move_to ) |

/ / p ro j e c t i n g the mouse coord inates on
/ / the x ax i s
transform ( project_on_x ) |

top_ruler_marker−>move_to ;
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Properly forking the stream

mouse_stream |
tee ( mouse_cursor−>move_to ) |
/ / I f we want to do something more
/ / complex with both streams a f te r
/ / fork ing , tee i s not readable
fork (

transform ( project_on_x ) |
top_ruler_marker−>move_to ,

transform ( project_on_y ) |
left_ru ler_marker−>move_to

) ;
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Transformations with state

c lass g rav i t y_ob j e c t {
pub l i c :

...

po in t operator ( ) ( const po in t &new_point )
{

m_point . x = m_point . x * .99
+ new_point . x * .01;

m_point . y = ... ;
re turn m_point ;

}

p r i v a t e :
po in t m_point ;
...

} ; 53
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Transformations with state
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Transformations with state

mouse_stream |
tee ( mouse_cursor−>move_to ) |
fork (

map( project_on_x ) |
top_ruler_marker−>move_to ,

map( project_on_y ) |
left_ru ler_marker−>move_to ,

map(gravity_object()) |
grav ity_marker−>move_to

) ;
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Stream filtering

We want only points where point.y % 100 == 0

mouse_stream |
tee ( mouse_cursor−>move_to ) |
fork (

...
filter(point_filter) |

f i l t e r_marker −>move_to
) ;
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Generating new events

c lass cont inuous_po ints {
pub l i c :

vector <point >
operator ( ) ( const po in t &new_point ) {

/ / generate a l l the po ints between the
/ / prev ious one and the new one
vector <point > resu l t = ...

m_previous_point = new_point ;
return resu l t ;

}

p r i v a t e :
po in t m_previous_point ;

} ;
57
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Generating new events

mouse_stream |
tee ( mouse_cursor−>move_to ) |
fork (

...
/ / or transform ( . . . ) | f l a t t e n
flatmap(continuous_points()) |

f i l t e r ( p o i n t _ f i l t e r ) |
f i l t e r_marker −>move_to

) ;
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What are the benefits?

Separate components
Reusable, composable transformations
Asynchronousness built into the software design

But that is not all...
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Microservices?
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Microservices?

62



Functional design Reactive programming CODE: meetingcpp

Microservices?

KDE Frameworks 5
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Libraries

For the lower level parts:

SObjectizer
C++ Actor Framework
ZeroMQ

For the higher level:

RxCpp
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Answers? Questions! Questions? Answers!

Kudos:

Friends at KDE and blueSystems
Dr Saša Malkov, Dr Zoltan Porkolab

MEAP – Manning Early Access Program

Functional Programming in C++
cukic.co/to/fp-in-cpp

Discount code:

meetingcpp
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