
Functional Reactive Programming in C++

Meeting C++ 2016

Ivan Čukíc

ivan.cukic@kde.org
http://cukic.co

Functional design Reactive programming CODE: meetingcpp

Disclaimer

Make your code readable. Pretend the next person
who looks at your code is a psychopath and they know
where you live.

Philip Wadler

2

Functional design Reactive programming CODE: meetingcpp

Disclaimer

The code snippets are optimized for presentation, it is not
production-ready code.
std namespace is omitted, value arguments used instead of const-refs or
forwarding refs, etc.

3

.

FUNCTIONAL DESIGN

Higher-order functions

Purity and referential transparency

Functional design Reactive programming CODE: meetingcpp

Elements of functional design

Higher-order functions
Purity
Immutable state
. . .

6

Functional design Reactive programming CODE: meetingcpp

Higher-order functions

We have had higher-order functions since C++98.

No lambdas, no std::function ... needed.

f i n d _ i f (beg in (cs) , end (cs) , is_error) ;

auto gt42 = bind (greater<>() , _1 , 42);
/ / or old bind1st , . . .

7

Functional design Reactive programming CODE: meetingcpp

Higher-order functions

We have had higher-order functions for as long as we have had
the call operator.

c lass func t i ona l_ob j e c t {
pub l i c :

r esu l t operator() (...) const
{

...
}

} ;

8

Functional design Reactive programming CODE: meetingcpp

Word frequency

1986: Donald Knuth was asked to implement a program for
the "Programming pearls" column in the Communications of
ACM journal.

The task: Read a file of text, determine the n most frequently
used words, and print out a sorted list of those words along
with their frequencies.

His solution written in Pascal was 10 pages long.

9

Functional design Reactive programming CODE: meetingcpp

Word frequency

1986: Donald Knuth was asked to implement a program for
the "Programming pearls" column in the Communications of
ACM journal.

The task: Read a file of text, determine the n most frequently
used words, and print out a sorted list of those words along
with their frequencies.

His solution written in Pascal was 10 pages long.

9

Functional design Reactive programming CODE: meetingcpp

Word frequency

Response by Doug McIlroy was a 6-line shell script that did
the same:

t r −cs A−Za−z ’ \ n ’ |
t r A−Z a−z |
sort |
un iq −c |
sort −rn |
sed ${1}q

10

Functional design Reactive programming CODE: meetingcpp

Functional thinking – data transformation

11

Functional design Reactive programming CODE: meetingcpp

Word frequency in C++

I t was a b r i gh t cold day i n Apr i l , \n
and the clocks were s t r i k i n g t h i r t e en . \n
Winston Smith , h i s ch i n nuzzled

data | transform (
[] (char c) {

return isalnum (c) ? c : ’ \ n ’ ;
})

I t \nwas\na\nb r i gh t \ncold\nday\n i n \nAp r i l \n\n
and\nthe\nclocks\nwere\n s t r i k i n g \n t h i r t e en \n\n
Winston\nSmith\n\nh i s \nch i n \nnuzzled

12

Functional design Reactive programming CODE: meetingcpp

Word frequency in C++

I t \nwas\na\nb r i gh t \ncold\nday\n i n \nAp r i l \n\n
and\nthe\nclocks\nwere\n s t r i k i n g \n t h i r t e en \n\n
Winston\nSmith\n\nh i s \nch i n \nnuzzled

. . . | transform (tolower)

i t \nwas\na\nb r i gh t \ncold\nday\n i n \n a p r i l \n\n
and\nthe\nclocks\nwere\n s t r i k i n g \n t h i r t e en \n\n
winston\nsmith\n\nh i s \nch i n \nnuzzled

13

Functional design Reactive programming CODE: meetingcpp

Word frequency in C++

i t \nwas\na\nb r i gh t \ncold\nday\n i n \n a p r i l \n\n
and\nthe\nclocks\nwere\n s t r i k i n g \n t h i r t e en \n\n
winston\nsmith\n\nh i s \nch i n \nnuzzled

. . . | s p l i t (’ \ n ’)

it was a bright cold day in april
and the clocks were striking thirteen
winston smith his chin nuzzled

14

Functional design Reactive programming CODE: meetingcpp

Word frequency in C++

it was a bright cold day in april
and the clocks were striking thirteen
winston smith his chin nuzzled

. . . | sort
| group_by (equal_to < >())

{ a a a a a . . . } ,
{ as as as as as . . . } ,
{ at at at at at . . . }

15

Functional design Reactive programming CODE: meetingcpp

Word frequency in C++

{ a a a a a . . . } ,
{ and and and and and . . . }
{ as as as as as . . . } ,

. . . | transform ([] (const auto &grp) {
return make_pair (

count (grp) , *grp . cbeg in ()) ;
})

(181, a) ,
(163, and) ,
(39, as) ,

16

Functional design Reactive programming CODE: meetingcpp

Word frequency in C++

(181, a) ,
(163, and) ,
(39, as) ,

. . . | sort
| reverse
| take (2)

(439, the) ,
(256, of) ,

17

Functional design Reactive programming CODE: meetingcpp

Word frequency in C++

data | transform ([] (char c) {
return isalnum (c) ? c : ’ \ n ’ ;

})
| transform (tolower)
| s p l i t (’ \ n ’)
| sort
| group_by (equal_to < >())
| transform ([] (const auto &grp) {

return make_pair (
count (grp) , *grp . cbeg in ()) ;

})
| sort
| reverse
| take (n)

* Inspired by the solution written by N. Milev in Haskell
18

Functional design Reactive programming CODE: meetingcpp

Purity and referential transparency

i n t answer ()
{

std::cout « "Calculating the result\n" ;
re turn 42;

}

...
auto resu l t = answer() ;
...

$./a.out
Calculating the result

19

Functional design Reactive programming CODE: meetingcpp

Purity and referential transparency

i n t answer ()
{

std::cout « "Calculating the result\n" ;
re turn 42;

}

...
auto resu l t = 42 ;
...

$./a.out

20

Functional design Reactive programming CODE: meetingcpp

Handling the program state

vo id on_cl i cked (const c l i c k_even t &event)
{

employees_view−> v i s i b l e = true ;
employees_view−>load_team () ;

}

21

Functional design Reactive programming CODE: meetingcpp

Handling the program state

vo id on_cl i cked (const c l i c k_even t &event)
{

employees_view−> v i s i b l e = true ;
employees_view−>load_team () ;

}

21

Functional design Reactive programming CODE: meetingcpp

Handling the program state

vo id on_cl i cked (const c l i c k_even t &event)
{

employees_view−> v i s i b l e = true ;
employees_view−>load_team () ;

}

21

Functional design Reactive programming CODE: meetingcpp

Handling the program state

vo id on_cl i cked (const c l i c k_even t &event)
{

employees_view−> v i s i b l e = true ;
employees_view−>load_team () ;

}

21

Functional design Reactive programming CODE: meetingcpp

Handling the program state

vo id on_cl i cked (const c l i c k_even t &event)
{

employees_view−> v i s i b l e = true ;
employees_view−>load_team () ;

}

21

Functional design Reactive programming CODE: meetingcpp

Handling the program state

vo id on_cl i cked (const c l i c k_even t &event)
{

employees_view−> v i s i b l e = true ;
employees_view−>load_team () ;

}

21

Functional design Reactive programming CODE: meetingcpp

Object-oriented design

Don’t ask for the information you need to do the work;
ask the object that has the information to do the work
for you.

Allen Holub

22

Functional design Reactive programming CODE: meetingcpp

Object-oriented design

Step one in the transformation of a successful
procedural developer into a successful object
developer is a lobotomy.

David West, Object Thinking

23

Functional design Reactive programming CODE: meetingcpp

Object-oriented design

[...] Besides that, object thinking will lead to object
immutability [...]

Yegor Bugayenko

24

Functional design Reactive programming CODE: meetingcpp

Object-oriented design

25

Functional design Reactive programming CODE: meetingcpp

State in pure functional programs

26

Functional design Reactive programming CODE: meetingcpp

State in pure functional programs

27

Functional design Reactive programming CODE: meetingcpp

Isn’t creating new worlds expensive?

Option 1: We don’t really want copies:

c lass world {
world with_populat ion

(i n t new_population) &&
{

world resu l t (std : : move(* t h i s)) ;
...
re turn resu l t ;

}
} ;

Option 2: Use immutable data structures (see Okasaki)

28

Functional design Reactive programming CODE: meetingcpp

Isn’t creating new worlds expensive?

c lass world {
world with_populat ion (i n t) && ;

} ;

auto brave_new_world =
world.with_population(6) ; // error!

auto new_world =
move(world).with_population(420) ;

29

Functional design Reactive programming CODE: meetingcpp

Isn’t creating new worlds expensive?

c lass world {
world with_populat ion (i n t) && ;

} ;

The compiler enforces us not to write inneficient code.

If we provide anything else, we explicitly tell through our API
that we support having parallel worlds.

30

Functional design Reactive programming CODE: meetingcpp

Benefits of having parallel worlds

Time travel (and reverse debugging, like gdb does)
Testing different possible scenarios at the same time
Maybe even having them interact with each other

31

REACTIVE PROGRAMMING

What is reactive?

Functional design Reactive programming CODE: meetingcpp

What is reactive?

We believe that a coherent approach to systems
architecture is needed, and we believe that all
necessary aspects are already recognised individually:
we want systems that are Responsive, Resilient, Elastic
and Message Driven. We call these Reactive Systems.
Systems built as Reactive Systems are more flexible,
loosely-coupled and scalable. This makes them easier
to develop and amenable to change. They are
significantly more tolerant of failure and when failure
does occur they meet it with elegance rather than
disaster. Reactive Systems are highly responsive, giving
users effective interactive feedback.

Reactive Manifesto 2.0

33

.

Functional design Reactive programming CODE: meetingcpp

Reactive systems

One view of being reactive:

responds quickly
resilient to failure
responsive under workload
based on message-passing

35

Functional design Reactive programming CODE: meetingcpp

What is reactive?

Showing a response to a stimulus

Oxford Dictionary

36

Functional design Reactive programming CODE: meetingcpp

Ways to be reactive?

C: event call-backs
Java: event listeners
C++/Qt: signals and slots
Threads for all!

even IO streams?

37

Functional design Reactive programming CODE: meetingcpp

Ways to be reactive?

C: event call-backs
Java: event listeners
C++/Qt: signals and slots
Threads for all!

even IO streams?

37

Functional design Reactive programming CODE: meetingcpp

Lets try this again...

Design components:

to react to requests, not to respond
to request, not to need the response

38

Functional design Reactive programming CODE: meetingcpp

Lets try this again...

39

Functional design Reactive programming CODE: meetingcpp

Lets try this again...

40

Functional design Reactive programming CODE: meetingcpp

Lets try this again...

41

Functional design Reactive programming CODE: meetingcpp

Lets try this again...

42

Functional design Reactive programming CODE: meetingcpp

Modify and pass on

No shared mutable state
Separate isolated components
Communication only through message passing
No upstream response messages

43

Functional design Reactive programming CODE: meetingcpp

Modify and pass on

44

Functional design Reactive programming CODE: meetingcpp

Modify and pass on

45

Functional design Reactive programming CODE: meetingcpp

What is a source?

Web server client connection requests
User interface events
Database results
I/O
Any data collection
...

46

Functional design Reactive programming CODE: meetingcpp

Streams are ranges

Streams can only be transformed with algorithms that accept
input ranges, since we don’t have all the items. We don’t even
know when (if) they will end.

transform, filter, take, drop, etc.

47

Functional design Reactive programming CODE: meetingcpp

Small demo

48

Functional design Reactive programming CODE: meetingcpp

Small demo

We have a stream of mouse cordinates: mouse_stream
And a set of receivers like mouse_cursor,
top_ruler_marker, etc.

Basic direct connection:

mouse_stream | mouse_cursor−>move_to ;

49

Functional design Reactive programming CODE: meetingcpp

Transforming the input

We want to transform the mouse coordinate, to project it on
the x axis:

mouse_stream |
transform (project_on_x) |

top_ruler_marker−>move_to ;

But the mouse cursor marker is no longer moving.

50

Functional design Reactive programming CODE: meetingcpp

Forking the stream

mouse_stream |
/ / Pass the events to the mouse cursor ,
/ / and pass them to the next
/ / t ransformat ion i n the cha i n
tee (mouse_cursor−>move_to) |

/ / p ro j e c t i n g the mouse coord inates on
/ / the x ax i s
transform (project_on_x) |

top_ruler_marker−>move_to ;

51

Functional design Reactive programming CODE: meetingcpp

Properly forking the stream

mouse_stream |
tee (mouse_cursor−>move_to) |
/ / I f we want to do something more
/ / complex with both streams a f te r
/ / fork ing , tee i s not readable
fork (

transform (project_on_x) |
top_ruler_marker−>move_to ,

transform (project_on_y) |
left_ru ler_marker−>move_to

) ;

52

Functional design Reactive programming CODE: meetingcpp

Transformations with state

c lass g rav i t y_ob j e c t {
pub l i c :

...

po in t operator () (const po in t &new_point)
{

m_point . x = m_point . x * .99
+ new_point . x * .01;

m_point . y = ... ;
re turn m_point ;

}

p r i v a t e :
po in t m_point ;
...

} ; 53

Functional design Reactive programming CODE: meetingcpp

Transformations with state

54

Functional design Reactive programming CODE: meetingcpp

Transformations with state

mouse_stream |
tee (mouse_cursor−>move_to) |
fork (

map(project_on_x) |
top_ruler_marker−>move_to ,

map(project_on_y) |
left_ru ler_marker−>move_to ,

map(gravity_object()) |
grav ity_marker−>move_to

) ;

55

Functional design Reactive programming CODE: meetingcpp

Stream filtering

We want only points where point.y % 100 == 0

mouse_stream |
tee (mouse_cursor−>move_to) |
fork (

...
filter(point_filter) |

f i l t e r_marker −>move_to
) ;

56

Functional design Reactive programming CODE: meetingcpp

Generating new events

c lass cont inuous_po ints {
pub l i c :

vector <point >
operator () (const po in t &new_point) {

/ / generate a l l the po ints between the
/ / prev ious one and the new one
vector <point > resu l t = ...

m_previous_point = new_point ;
return resu l t ;

}

p r i v a t e :
po in t m_previous_point ;

} ;
57

Functional design Reactive programming CODE: meetingcpp

Generating new events

mouse_stream |
tee (mouse_cursor−>move_to) |
fork (

...
/ / or transform (. . .) | f l a t t e n
flatmap(continuous_points()) |

f i l t e r (p o i n t _ f i l t e r) |
f i l t e r_marker −>move_to

) ;

58

Functional design Reactive programming CODE: meetingcpp

What are the benefits?

Separate components
Reusable, composable transformations
Asynchronousness built into the software design

But that is not all...

59

Functional design Reactive programming CODE: meetingcpp

Microservices?

60

Functional design Reactive programming CODE: meetingcpp

Microservices?

61

Functional design Reactive programming CODE: meetingcpp

Microservices?

62

Functional design Reactive programming CODE: meetingcpp

Microservices?

KDE Frameworks 5

63

Functional design Reactive programming CODE: meetingcpp

Libraries

For the lower level parts:

SObjectizer
C++ Actor Framework
ZeroMQ

For the higher level:

RxCpp

64

Functional design Reactive programming CODE: meetingcpp

Answers? Questions! Questions? Answers!

Kudos:

Friends at KDE and blueSystems
Dr Saša Malkov, Dr Zoltan Porkolab

MEAP – Manning Early Access Program

Functional Programming in C++
cukic.co/to/fp-in-cpp

Discount code:

meetingcpp

65

	Functional design
	Higher-order functions
	Purity and referential transparency

	Reactive programming
	What is reactive?

